A Probabilistic Modeling Clonal Selection Algorithm and Its Application to Traveling Salesman Problems
نویسندگان
چکیده
In this paper, we propose a probabilistic modeling clonal selection algorithm which combines the clonal selection algorithm (CSA) and the probabilistic modeling (PM) for traveling salesman problem (TSP). The clonal selection algorithm is employed by the natural immune system to define the basic features of an immune response to an antigenic stimulus, can initialize antibodies and maintain the population diversity. Furthermore, the PM phase attempts to reduce the computational complexity, generate new solution offspring for the CSA phase. Simulations on traveling salesman problems show that the proposed algorithm has better performance when compared with other traditional algorithms.
منابع مشابه
Solving Traveling Salesman Problem based on Biogeography-based Optimization and Edge Assembly Cross-over
Biogeography-Based Optimization (BBO) algorithm has recently been of great interest to researchers for simplicity of implementation, efficiency, and the low number of parameters. The BBO Algorithm in optimization problems is one of the new algorithms which have been developed based on the biogeography concept. This algorithm uses the idea of animal migration to find suitable habitats for solvin...
متن کاملImproved Clonal Algorithm and Its Application to Traveling Salesman Problem
To explain the essential features such as sufficient diversity, discrimination of self and non-self, and also long-lasting immunologic memory of adaptive immune responses, Burnet and Talmage developed the clonal selection theory. In their model, only the high affinity immune cells are selected to proliferate. Those cells with low affinity must be efficiently deleted or be set as inactive. Howev...
متن کاملA Mushy State Simulated Annealing
It is a long time that the Simulated Annealing (SA) procedure has been introduced as a model-free optimization for solving NP-hard problems. Improvements from the standard SA in the recent decade mostly concentrate on combining its original algorithm with some heuristic methods. These modifications are rarely happened to the initial condition selection methods from which the annealing schedules...
متن کاملSolving the Multiple Traveling Salesman Problem by a Novel Meta-heuristic Algorithm
The multiple traveling salesman problem (MTSP) is a generalization of the famous traveling salesman problem (TSP), where more than one salesman is used in the solution. Although the MTSP is a typical kind of computationally complex combinatorial optimization problem, it can be extended to a wide variety of routing problems. This paper presents an efficient and evolutionary optimization algorith...
متن کاملA reactive bone route algorithm for solving the traveling salesman problem
The traveling salesman problem (TSP) is a well-known optimization problem in graph theory, as well as in operations research that has nowadays received much attention because of its practical applications in industrial and service problems. In this problem, a salesman starts to move from an arbitrary place called depot and after visits all of the nodes, finally comes back to the depot. The obje...
متن کامل